Parameter multi-domain “hp” empirical interpolation

نویسندگان

  • Jens L. Eftang
  • Benjamin Stamm
چکیده

preprint numerics no. 3/2011 norwegian university of science and technology trondheim, norway In this paper, we introduce two parameter multi-domain " hp " techniques for the empirical interpolation method (EIM). In both approaches, we construct a partition of the original parameter domain into parameter subdomains: h-refinement. We apply the standard EIM independently within each subdomain to yield local (in parameter) approximation spaces: p-refinement. Further, for a particularly simple case we introduce a priori convergence theory for the partition procedure. We show through two numerical examples that our approaches provide significant reduction in the EIM approximation space dimension, and thus significantly reduce the computational cost associated with EIM approximations .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Reduced Basis Element Method for Complex Flow Systems

The reduced basis element method is a new approach for approximating the solution of problems described by partial differential equations within domains belonging to a certain class. The method takes its roots in domain decomposition methods and reduced basis discretizations. The basic idea is to first decompose the computational domain into smaller blocks that are topologically similar to a fe...

متن کامل

An "hp" Certified Reduced Basis Method for Parametrized Elliptic Partial Differential Equations

We present a new “hp” parameter multi-domain certified reduced basis method for rapid and reliable online evaluation of functional outputs associated with parametrized elliptic partial differential equations. We propose a new procedure and attendant theoretical foundations for adaptive partition of the parameter domain into parameter subdomains (“h”-refinement); subsequently, we construct indiv...

متن کامل

A posteriori error bounds for the empirical interpolation method

We present rigorous a posteriori error bounds for the Empirical Interpolation Method (EIM). The essential ingredients are (i) analytical upper bounds for the parametric derivatives of the function to be approximated, (ii) the EIM “Lebesgue constant,” and (iii) information concerning the EIM approximation error at a finite set of points in parameter space. The bound is computed “offline” and is ...

متن کامل

The Generalized Empirical Interpolation Method: stability theory on Hilbert spaces with an application to the Stokes equation

The Generalized Empirical Interpolation Method (GEIM) is an extension first presented by Maday and Mula in [1] in 2013 of the classical empirical interpolation method (presented in 2004 by Barrault, Maday, Nguyen and Patera in [2]) where the evaluation at interpolating points is replaced by the more practical evaluation at interpolating continuous linear functionals on a class of Banach spaces....

متن کامل

h and hp-adaptive Interpolation by Transformed Snapshots for Parametric and Stochastic Hyperbolic PDEs

The numerical approximation of solutions of parametric or stochastic hyperbolic PDEs is still a serious challenge. Because of shock singularities, most methods from the elliptic and parabolic regime, such as reduced basis methods, POD or polynomial chaos expansions, show a poor performance. Recently, Welper [Interpolation of functions with parameter dependent jumps by transformed snapshots. SIA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1965